Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Biotechnol ; 39(6): 717-726, 2021 06.
Article in English | MEDLINE | ID: covidwho-1065901

ABSTRACT

Cas13a has been used to target RNA viruses in cell culture, but efficacy has not been demonstrated in animal models. In this study, we used messenger RNA (mRNA)-encoded Cas13a for mitigating influenza virus A and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in mice and hamsters, respectively. We designed CRISPR RNAs (crRNAs) specific for PB1 and highly conserved regions of PB2 of influenza virus, and against the replicase and nucleocapsid genes of SARS-CoV-2, and selected the crRNAs that reduced viral RNA levels most efficiently in cell culture. We delivered polymer-formulated Cas13a mRNA and the validated guides to the respiratory tract using a nebulizer. In mice, Cas13a degraded influenza RNA in lung tissue efficiently when delivered after infection, whereas in hamsters, Cas13a delivery reduced SARS-CoV-2 replication and reduced symptoms. Our findings suggest that Cas13a-mediated targeting of pathogenic viruses can mitigate respiratory infections.


Subject(s)
COVID-19/therapy , Influenza, Human/therapy , RNA, Messenger/pharmacology , SARS-CoV-2/genetics , Animals , COVID-19/genetics , COVID-19/virology , CRISPR-Cas Systems/genetics , Cricetinae , Disease Models, Animal , Humans , Influenza, Human/genetics , Influenza, Human/virology , Mice , Orthomyxoviridae/drug effects , Orthomyxoviridae/genetics , Orthomyxoviridae/pathogenicity , RNA, Messenger/genetics , RNA, Viral/genetics , Respiratory System/drug effects , Respiratory System/metabolism , SARS-CoV-2/pathogenicity
2.
Viruses ; 13(1)2021 Jan 19.
Article in English | MEDLINE | ID: covidwho-1060279

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can cause neurological disease in humans, but little is known about the pathogenesis of SARS-CoV-2 infection in the central nervous system (CNS). Herein, using K18-hACE2 mice, we demonstrate that SARS-CoV-2 neuroinvasion and encephalitis is associated with mortality in these mice. Intranasal infection of K18-hACE2 mice with 105 plaque-forming units of SARS-CoV-2 resulted in 100% mortality by day 6 after infection. The highest virus titers in the lungs were observed on day 3 and declined on days 5 and 6 after infection. By contrast, very high levels of infectious virus were uniformly detected in the brains of all the animals on days 5 and 6. Onset of severe disease in infected mice correlated with peak viral levels in the brain. SARS-CoV-2-infected mice exhibited encephalitis hallmarks characterized by production of cytokines and chemokines, leukocyte infiltration, hemorrhage and neuronal cell death. SARS-CoV-2 was also found to productively infect cells within the nasal turbinate, eye and olfactory bulb, suggesting SARS-CoV-2 entry into the brain by this route after intranasal infection. Our data indicate that direct infection of CNS cells together with the induced inflammatory response in the brain resulted in the severe disease observed in SARS-CoV-2-infected K18-hACE2 mice.


Subject(s)
Brain/virology , COVID-19/pathology , Encephalitis, Viral/pathology , Lung/virology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Brain/pathology , COVID-19/mortality , Cytokines/blood , Disease Models, Animal , Encephalitis, Viral/virology , Lung/pathology , Mice , Mice, Transgenic , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL